3.173 \(\int \frac {\sqrt {a+a \cos (c+d x)} (A+C \cos ^2(c+d x))}{\sqrt {\cos (c+d x)}} \, dx\)

Optimal. Leaf size=124 \[ \frac {\sqrt {a} (8 A+3 C) \sin ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{4 d}+\frac {C \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}{2 d}+\frac {a C \sin (c+d x) \sqrt {\cos (c+d x)}}{4 d \sqrt {a \cos (c+d x)+a}} \]

[Out]

1/4*(8*A+3*C)*arcsin(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))*a^(1/2)/d+1/4*a*C*sin(d*x+c)*cos(d*x+c)^(1/2)/
d/(a+a*cos(d*x+c))^(1/2)+1/2*C*sin(d*x+c)*cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.31, antiderivative size = 124, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.108, Rules used = {3046, 2981, 2774, 216} \[ \frac {\sqrt {a} (8 A+3 C) \sin ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{4 d}+\frac {C \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}{2 d}+\frac {a C \sin (c+d x) \sqrt {\cos (c+d x)}}{4 d \sqrt {a \cos (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[a + a*Cos[c + d*x]]*(A + C*Cos[c + d*x]^2))/Sqrt[Cos[c + d*x]],x]

[Out]

(Sqrt[a]*(8*A + 3*C)*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(4*d) + (a*C*Sqrt[Cos[c + d*x]]*
Sin[c + d*x])/(4*d*Sqrt[a + a*Cos[c + d*x]]) + (C*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x])/(2
*d)

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 2774

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2/f, Su
bst[Int[1/Sqrt[1 - x^2/a], x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]

Rule 2981

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-2*b*B*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(2*n + 3)*Sqr
t[a + b*Sin[e + f*x]]), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b*d*(2*n + 3)), Int[Sqrt[a + b*
Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] &&
EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]

Rule 3046

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*
sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n
+ 1))/(d*f*(m + n + 2)), x] + Dist[1/(b*d*(m + n + 2)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n*Simp
[A*b*d*(m + n + 2) + C*(a*c*m + b*d*(n + 1)) + C*(a*d*m - b*c*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b
, c, d, e, f, A, C, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[m, -2^(-
1)] && NeQ[m + n + 2, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx &=\frac {C \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{2 d}+\frac {\int \frac {\sqrt {a+a \cos (c+d x)} \left (\frac {1}{2} a (4 A+C)+\frac {1}{2} a C \cos (c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx}{2 a}\\ &=\frac {a C \sqrt {\cos (c+d x)} \sin (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}+\frac {C \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{2 d}+\frac {1}{8} (8 A+3 C) \int \frac {\sqrt {a+a \cos (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {a C \sqrt {\cos (c+d x)} \sin (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}+\frac {C \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{2 d}-\frac {(8 A+3 C) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^2}{a}}} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{4 d}\\ &=\frac {\sqrt {a} (8 A+3 C) \sin ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{4 d}+\frac {a C \sqrt {\cos (c+d x)} \sin (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}+\frac {C \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.28, size = 98, normalized size = 0.79 \[ \frac {\sec \left (\frac {1}{2} (c+d x)\right ) \sqrt {a (\cos (c+d x)+1)} \left (\sqrt {2} (8 A+3 C) \sin ^{-1}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right )+2 C \left (2 \sin \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {3}{2} (c+d x)\right )\right ) \sqrt {\cos (c+d x)}\right )}{8 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[a + a*Cos[c + d*x]]*(A + C*Cos[c + d*x]^2))/Sqrt[Cos[c + d*x]],x]

[Out]

(Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*(Sqrt[2]*(8*A + 3*C)*ArcSin[Sqrt[2]*Sin[(c + d*x)/2]] + 2*C*Sqrt[
Cos[c + d*x]]*(2*Sin[(c + d*x)/2] + Sin[(3*(c + d*x))/2])))/(8*d)

________________________________________________________________________________________

fricas [A]  time = 0.79, size = 114, normalized size = 0.92 \[ \frac {{\left (2 \, C \cos \left (d x + c\right ) + 3 \, C\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - {\left ({\left (8 \, A + 3 \, C\right )} \cos \left (d x + c\right ) + 8 \, A + 3 \, C\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right )}{4 \, {\left (d \cos \left (d x + c\right ) + d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*(a+a*cos(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

1/4*((2*C*cos(d*x + c) + 3*C)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*sin(d*x + c) - ((8*A + 3*C)*cos(d*x
+ c) + 8*A + 3*C)*sqrt(a)*arctan(sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))))/(d*cos(d
*x + c) + d)

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*(a+a*cos(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [A]  time = 0.44, size = 202, normalized size = 1.63 \[ \frac {\sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \left (\cos ^{\frac {3}{2}}\left (d x +c \right )\right ) \left (-1+\cos \left (d x +c \right )\right )^{2} \left (2 C \sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right )+3 C \sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+8 A \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}{\cos \left (d x +c \right )}\right )+3 C \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}{\cos \left (d x +c \right )}\right )\right )}{4 d \left (\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {3}{2}} \sin \left (d x +c \right )^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*cos(d*x+c)^2)*(a+a*cos(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x)

[Out]

1/4/d*(a*(1+cos(d*x+c)))^(1/2)*cos(d*x+c)^(3/2)*(-1+cos(d*x+c))^2*(2*C*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^
(1/2)*cos(d*x+c)+3*C*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+8*A*arctan(sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x
+c)))^(1/2)/cos(d*x+c))+3*C*arctan(sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*x+c)))/(cos(d*x+c)/(1+co
s(d*x+c)))^(3/2)/sin(d*x+c)^4

________________________________________________________________________________________

maxima [B]  time = 1.10, size = 1207, normalized size = 9.73 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*(a+a*cos(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

1/16*(16*A*sqrt(a)*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*ar
ctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*co
s(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + cos(d*x + c)) + (2*(cos(2
*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*((cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d
*x + 2*c)))*sin(2*d*x + 2*c) - (cos(2*d*x + 2*c) - 2)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + s
in(2*d*x + 2*c))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + ((cos(2*d*x + 2*c) - 2)*cos(1/2*ar
ctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(2*d*x + 2*c)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*
c))) - cos(2*d*x + 2*c) + 2)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*sqrt(a) + 3*sqrt(a)*(ar
ctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*
c), cos(2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*x +
2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 + sin(
2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*cos(1
/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin
(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))) + 1) - arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2
*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*d*x +
 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2
*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(co
s(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) +
sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))
 - 1) - arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2
*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*
cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1) + arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)
^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)
^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1
)) - 1)))*C)/d

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )\,\sqrt {a+a\,\cos \left (c+d\,x\right )}}{\sqrt {\cos \left (c+d\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x))^(1/2))/cos(c + d*x)^(1/2),x)

[Out]

int(((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x))^(1/2))/cos(c + d*x)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {a \left (\cos {\left (c + d x \right )} + 1\right )} \left (A + C \cos ^{2}{\left (c + d x \right )}\right )}{\sqrt {\cos {\left (c + d x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)**2)*(a+a*cos(d*x+c))**(1/2)/cos(d*x+c)**(1/2),x)

[Out]

Integral(sqrt(a*(cos(c + d*x) + 1))*(A + C*cos(c + d*x)**2)/sqrt(cos(c + d*x)), x)

________________________________________________________________________________________